Refactoring: Improving the Design of Existing Code - book notes

Originally published 10.09.2021

https://keepgrowing.in/taking-care/refactoring-improving-the-design-of-existing-code-book-notes/

When
before adding new feature for befter understanding for small improvements during a code review
- how can you make adding/fixing - don't rely on human memory. move - boy scout rule (litfer-picking - with the author
things easier? the understanding info the code refacforing)

- can you see design behind the code?

Definition

- small changes

- preserving observable behaviour
- leaves code in working state

When not fo refactor?
- when it's easier to rewrite

- when you don't heed fo fouch this code

Why

improves soffware design ~ makes it easy to understand helps with finding bugs enables fasfer programming it's cheaper to modify/add feafures
- it's difficult fo do good design - everything that would have fo be - code is so clean thaf if's hard - existing code leverages adding - code is so clean that if's hard
up front remembered is fleshed out in the code fo miss bugs new features: fo miss bugs
- eliminates duplication - good design makes it easy o
- sfops code decay find where you need of add
- reduces the amount of code new code

- modularity means that you

have to understand only small

portion of the code

- clarity helps with reducing

potential bugs

Page 1out of 2 https://keepgrowing.in

https://github.com/little-pinecone

Refactoring: Improving the Design of Existing Code - book notes

Refacforing among other practices
Overcome obsfacles

cD - always-releasable state

- emphasize financial gain
- shared code ownership YAGNI - no needless flexibility
- CL small branches integrafed daily

- carefully select what will be refactored in the
legacy code (code visifed frequertly) I - no conflicts
- use migrafions when refacforing database

refactoring

self-testing code - no bugs

Performance approaches

fime budgefing constant atfention first write good code. then opfimize
- give each component budgef for - tuning performance all the fime. nof - run the program under a profiler fo find
resources, crifical for embedded where if's really beneficial performance hot spots
sysfems - slows development, wastes fime - gefting more effect with less work
- performance improvemeris are - remove change if profiler shows no significant
spread all around the program. each improvement
made with a narrow perspective - clear code facilitates effective optimization

Notes based on

Fowler. Martin. Refactoring: Improving the Design of Existing Codle. Pearson Education. 2019

https://keepgrowing.in
Page 2 out of 2 https://github.com/little-pinecone

