
Page 1 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps
Originally published on 25 October 2020

https://keepgrowing.in/taking-care/how-to-get-better-at-estimating-tasks-in-10-steps/

Estimating programming tasks is a complex process. There is no one-size-fits-all solution. 
Furthermore, skimping on resources to get it right turns the entire procedure into reading tea leaves. 
However, we can improve the accuracy of our predictions by applying the following practices.

1. Expect trust when making decisions
Having the “productive partnerships” value from the Manifesto for Software Craftsmanship in mind, 
verify that the relationship between a Development Team, Domain Experts and a Product Owner 
is free from the mis-engagement of management. This advice is extremely helpful in reducing the time 
we waste on work that doesn’t add much value to the product. Moreover, we’ll be able to produce 
more accurate estimates.

The team decides "how" to achieve goals, the Product Owner decides "what" is most important. 
The Domain Experts provide crucial knowledge about their area of expertise. Don't let this balance 
suffer from micromanagement or unnecessary intermediaries and remember that developers are 
not just code monkeys. Otherwise, estimating tasks lacks the insight that the team could have brought 
in personally discussing goals and requirements with the Product Owner and Domain Experts. 
Ultimately, the estimates are unreliable and the time spent on tasks is wasted because the value 
provided is less relevant to end users than it should be.

You’re a professional

Ignoring developers when estimating tasks might result in numbers that are appealing from 
a marketing point of view. However, it shows a serious lack of competence. Unfortunately, there are 
many projects that have a technological stack, due date and feature list sealed on paper before even 
a single programmer is consulted.

It makes no sense to have estimates that are not based on reality. To cope with the imminent problems, 
programmers are asked to abandon rules of software craftsmanship and cease writing unit tests. 
This is a quick and stupid way to completely destroy a project by making it unmaintainable, unusable, 
buggy and even dangerous.

The fact that management may not understand the importance of the principles guiding professional 
programmers does not mean that they can view them as a waste of resources.

Trust facilitates task estimation

One of the most important strategies to ensure that a task actually benefits the project is to allow 
developers to review both its requirements and design with the strong and direct support from 
the Domain Experts and Product Owner. As many team members as possible should be involved in 
this review to get reliable and thorough conclusions that are priceless when estimating tasks.



Page 2 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

By default, accept that the responsibility for making decisions about architecture, technology 
and organizing work rests with the team. The collective code ownership practice guarantees 
that the whole team ensures project quality. In addition, the extreme programming and software 
craftsmanship principles greatly reduce the impact of inaccurate projections – it's easy to add new 
functions efficiently when the existing code adheres to those practices.

Micromanagement is a waste of time that has no place in a dignified and well-functioning organization. 
Moreover, a project that relies on a manager who used to have something to do with IT many years 
ago and now has the decisive voice in architectural decisions is dead on arrival. Keep in mind 
that the more valuable and productive developers are, the sooner they leave an organization that doesn't 
trust them and doesn't treat them like professionals. Even the most sophisticated methodologies 
will not help in obtaining valuable estimates when no one wants to work in the organization long 
enough to learn about the specifics of the project.

2. Consult problem finders
Developers competent enough to identify the nuances and risks of software development process 
shouldn't be shushed when the team estimates tasks. Often what they have to say does not match 
our wishful thinking. Therefore, problem finders protect us from committing to overly optimistic 
estimates. They are invaluable in adjusting the scope of a project and making it more realistic.

Never sign all documents confirming the terms of a contract without consulting with developers. 
Take them seriously when they point out unrealistic expectations or promises conjured out of thin 
air. Don't underestimate their cries for more down-to-earth estimates – this protects the entire company 
from becoming addicted to miracles as the due date approaches. Any wishful thinking about a project 
deadline or scope is unacceptable.

A real professional will do all it takes to keep their employer from financial consequences 
of overcommitting. This includes providing the necessary expertise to completely deprive management 
of any illusions before they seal any promises on paper.

3.Allocate enough time for proper research
Even an experienced team needs time to research new, better, and more optimized ways to implement 
features. In other words, we cannot rely on implementing familiar and common features in the way 
that was used three years ago.

Lack of research results in unoptimized, outdated code that is vulnerable to security breaches and more 
difficult to maintain by younger developers, accustomed to modern, better-suited tools. If you don't 
include the research phase as part of the assignment you evaluate, you will lose the opportunity 
to learn about new security issues that could endanger the project or external libraries that would 
perfectly suit your needs, saving a lot of time for implementation.



Page 3 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

A research phase is flexible and it takes various amounts of time for different developers and different 
tasks. However, ignoring it when estimating tasks will rise maintenance costs as the new code may 
introduce bugs or fail to solve the real problem.

How to research a programming assignment so the time is well invested

1. Develop a comprehensive understanding of the problem. Book some time to consult Domain 
Experts, don't be timid about the amount of questions – developers should always be allowed 
to make as many inquiries as they need.

2. Rephrase the problem from the point of view of users. What value will solving the task bring 
to the project and the people using it?

3. Create sketches, diagrams, make notes in plain English, enumerate algorithmic steps, write test 
cases. Ask other programmers for peer reviewing your answer to a problem, verify whether you're 
thinking in the right direction or need to change the approach. Question the solution design while 
it is still only on paper.

4. Ask what the possible blockers, difficulties and complications are. Don't attempt to solve them 
at this point! The sole purpose of this list is to prevent surprise from foreseeable problems. 
In addition, it will make the research phase more thorough and provide you with a list of exceptions 
to deal with.

5. Research the place in the existing codebase where the solution is meant to fit. Which parts 
of the system will be interacting with each other?

6. Be clear about features that the solution won't provide. Mark the boundaries to protect yourself 
from feature creep.

7. Search for ready to use solutions. Examine available open source and commercial libraries 
and asses their usefulness, availability and maintenance cost. Ponder on the pros and cons 
of adding an external dependency to the project.

8. Use a spike to verify that your solution passes unit testing that reflects the most important 
requirements. Responding to business needs is a very valuable part of our job, but it may be 
cumbersome. Therefore, we must be able to check many ideas quickly and easily against these 
tests.

Benefits

Attach the artifacts created during the research to the task description. Make your research explicit 
to other programmers. Not only will it save a lot of time when someone has to pick up your assignment, 
it will also provide test cases, a list of exceptions to handle, and details that can be copied into 
the project documentation.

4.Break down features into easily manageable tasks
Make sure that the tasks are actually achievable in a reasonably short time, e.g. they have been 
evaluated by the team at a small number of points. As a result, any mistakes made when estimating 
tasks will appear early, will be minor, and won't disrupt the project schedule.



Page 4 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

Don't hesitate to break a task into smaller components. It'll help you define the requirements more 
clearly and identify all corner cases. Moreover, the whole story will be implemented more accurately, 
without taking any shortcuts that could harm the project in the long run. This will keep everyone more 
focused on solving real problems and adding substantial value to the project.

Another key point is that more concise tasks make continuous integration much easier. A regularly 
updated codebase means we don't have to make as many assumptions when estimating future 
workload. Moreover, we can follow the progress on a burn down chart more accurately and quickly 
notice even a slight delay. Thus, allowing us to apply a back-up plan in good time to meet the deadline 
(e.g. cut the sprint scope, do pair programming, use an open source library instead of custom code).

5. Keep priorities in check
The better defined and divided the tasks are, the easier it is to prioritize them. Estimates are only 
forecasts based on many assumptions, guesses, and, usually, a small amount of data. It's irrational 
to expect them to be 100% correct. Therefore, we must be prepared when reality does not follow 
them. Fortunately, thanks to reasonably short sprints (e.g. two weeks) and well-defined, small tasks, 
we can quickly realise that the predictions may not be correct. When the priorities are clear, we can 
engineer a back-up plan for the situation when some of the most valuable features can't be delivered 
on time.

Separating what's crucial from what's nice to have in a project might even save the deadline as we can 
easily decide how to narrow the scope of the upcoming release. This way, we can meet the deadline 
and still deliver a valuable product.

“How Dead Space's Scariest Scene Almost Killed the Game” – the interview with Glen Schofield, 
the co-founder of Sledgehammer Games and the creator/director of Dead Space, gives a great 
example of how adjusting a project's scope, maintaining laser focus, dividing problems 
into manageable chunks and sticking to priorities can save a project.

6. Estimate in appropriate units
Be aware that an hour from an experienced developer gives a different amount of work than an hour 
from a person learning a particular technology. One hour is not equal to another. Estimating in abstract 
points and according to the Fibonacci sequence will best reflect differences in task complexity.

Moreover, defective leadership can make programmers prioritize meeting a specific deadline over 
solving a problem, shifting their attention from understanding a task to its due date. Thinking about 
how much time we have before a task has to be marked as "Done" on the project board makes it 
difficult for us to focus on dealing with the actual problem. As a result, many tasks "completed" on time 
provide only superficial solutions to persistent problems. As we can read in the Atlassian estimation 
guide:



Page 5 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

“Story points reward team members for solving problems based on difficulty, not time spent. This 
keeps team members focused on shipping value, not spending time.”

https://www.atlassian.com/agile/project-management/estimation

Estimating tasks in hours – risky and costly

A team can TRY to estimate in tangible units without bringing much harm to the project, if ALL 
of the following rules are met:

1. Tasks have been estimated in abstract points for long enough to allow us to gather a meaningful 
set of data required to identify recurring patterns as well as to develop the ability to properly 
divide problems into smaller ones and gather business requirements effectively.

2. Tasks are always small, well-defined and most of them received the same (and low) number 
of points – there is little or no difference in complexity between them because the team already 
knows how to divide problems into small chunks.

3. You collected enough statistics for the particular team to calculate how many hours on average 
a task takes for a given number of points (the greater the number of points – the less reliable 
the hourly estimate).

4. You realise the statistics expire when a team gains or loses a member – you have to go back 
to estimating in points.

5. The team is strongly unified in skills and competence within the project's technological stack 
(never use tenure as a metric for developer's experience), which means that one developer working 
hour gives a similar result to another developer working hour (highly unlikely).

6. The team agrees on this.
7. Estimating tasks in hours is carried out in each team separately (do not use statistics collected 

for one team to another).

Consequences

If the team chooses to follow this approach, everyone involved in the project must understand 
that the estimates have a margin of error to accept and are generally less reliable than the velocity 
measured in points. In addition, the amount of work required to keep the hourly estimates as close 
to reality as possible and the number of complications that could destroy our forecasts make this 
approach less effective and risky. The cost of switching between hourly and point estimating each 
time a team loses or gains a member greatly undermines the whole idea.

7. Remember that estimates are not transitive between 
teams
Estimates only belong to those who have committed to them. You can't freely apply them to new 
team members or even other teams. Take into account all differences in experience and proficiency 
between programmers – they are not faceless, indistinguishable beings. Expect teams to take 
responsibility only for the estimates they have committed to. Don't compare estimates between 



Page 6 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

different groups to pressure one of them to make more optimistic predictions only because the other 
one can do it.

“Each team will estimate work on a slightly different scale, which means their velocity (measured in 
points) will naturally be different. This, in turn, makes it impossible to play politics using velocity as 
a weapon.”

https://www.atlassian.com/agile/project-management/estimation

Other people's predictions or management's ideas about the duration of the assignment are in vain 
without the team's confirmation. Always see yourself and other developers as professionals who can 
evaluate their own work.

8. Ask for the actual scope and deadlines
Make sure everyone on your team knows the true deadlines and project requirements. Agreeing 
to work with managers who keep this knowledge to themselves is asking for trouble. There are already 
enough assumptions that the team must make to maintain an agile approach and deliver software 
tailored to the ever-changing needs of consumers.

If somebody is deliberately hiding business knowledge to force more optimistic estimates, the project 
is doomed to failure. If you are consistently in a situation where you learned about a requirement 
crucial for estimating a task AFTER you had started working on it, you have to take a stand. First, 
when someone wants to add an expensive requirement to an already estimated task, agree on what 
can be removed from the sprint scope if the deadline is compromised. Second, make sure 
that transparency is a value shared by everyone involved in the project. Otherwise, the estimates 
are useless.

The team should refuse to estimate when communication with stakeholders lacks transparency 
or someone is lying about the requirements to get better estimates. If developers don't know 
the context, strategic goals, and priorities of a project, their performance suffers. They can't foresee 
the consequences of their code and technological choices, leading to unsustainable and expensive 
code. In summary, agreeing to work in a dishonest environment takes away the opportunity to solve 
real problems. Instead, we provide only superficial solutions and a rapidly growing technical debt.

9. Use past data to better estimate future tasks
Being consistent about measuring velocity pays off when we need to predict future productivity. 
There is no point in committing to tasks worth 60 points when, on average, our team manages 
to complete 30 in one sprint.

Ignoring statistics not only destroys confidence in the team's past performance, but also makes 
prioritizing difficult. Wishful thinking brings more harm than good. When we disregard the actual 
team performance, the scope of the sprint may expand in an uncontrolled manner. Trying to force 



Page 7 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

estimates that are inconsistent with data and facts is an easy way to destroy the project and team. 
Agree on the techniques you use in your sprint review to gain valuable insight, such as:

“Try, for example, pulling up the last 5 user stories the team delivered with the story point value 8. 
Discuss whether each of those work items had a similar level of effort. If not, discuss why. Use that 
insight in future estimation discussions.”

https://www.atlassian.com/agile/project-management/estimation

The hope that we'll automatically "get better" at estimating tasks is unreasonable. We can't even copy 
estimates for the same tasks! Assuming you repeatedly evaluate and do one type of task, you will 
also be more efficient in completing it, which impacts each subsequent prediction. If the tasks 
are identical, you deal with the problem only once and then somebody can reuse the solution (unless 
you solved the issue poorly). Furthermore, as a developer, you have to work with different technologies, 
resolve various problems and constantly learn new tools. Therefore, even when working with similar 
applications, you are never asked to estimate two identical tasks. 

We can't effectively learn from the past if we haven't measured progress or recorded any lessons 
from previous sprints.

10. Review both failed and successful estimates as a team
If you have to explain overdue tasks, take your time to identify the actual sources of the delay. Reiterate 
over the steps presented in this article and answer the following questions:

1. Who decided on the estimates? Was it the team in agreement with the Product Owner and Domain 
Experts or was it someone from the management?

2. Has anyone tried to brainstorm possible problems and blockers that might hinder progress?
3. Was the research phase a planned and organized undertaking?
4. What is the size of the overdue tasks? How often was the new code merged with the codebase? 

In which stage of the sprint did you realise that something won't be delivered?
5. Did the priorities keep changing during the sprint? Who decided on what should be done? 

Did you have a list of features that are not essential and could be cut from the sprint's scope? 
Did the team spend time on nice-to-have features before moving on to must-haves?

6. In which units were the estimates made? Did you estimate in hours for a development team 
of varying skill levels?

7. Did anyone decide to move the work to another team and keep the original projections?
8. Were the goals clear to everyone? Or did the management keep the team in the dark to avoid 

tough discussions about scope and priorities?
9. On what basis were the estimates made? Do you have any historical data for the team 

such as its velocity to use as a reference?
10. What conclusions from the last review were implemented in this sprint? Did they work?



Page 8 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

Group the problems

Trying to tackle all obstacles at once can be discouraging and ineffective. As a remedy, try to assign 
the problems you identified to the following categories:

• requirements that were kept hidden from the developers during estimating tasks;
• actual surprises – the problems that could not be predicted;
• what was poorly estimated – include both too optimistic and too pessimistic estimates.

Determine which group is the most numerous. As a result, you will know which area's improvement 
will have the most positive impact on better task estimation.

Discard what doesn't work, embrace what's worth keeping

Consult every member of the team and use their feedback to identify the estimation mistakes. 
Furthermore, don't forget about all the techniques and procedures that improved your accuracy. Make 
sure that the conclusions are clear and everyone involved in the process agrees on them. Transfer 
the truly beneficial practices to next sprints and other projects if applicable.

However, if the estimates were imposed on the team, the developers don't own them. This limits 
the space for improvements as they can't do much until the management starts to trust them.

References
1. Manifesto for Software Craftsmanship, http://manifesto.softwarecraftsmanship.org/ (October, 

2020).
2. Scrum Development Team, https://www.scrum.org/resources/what-is-a-scrum-development-

team (October, 2020).
3. Domain Expert, https://wiki.c2.com/?DomainExpert (October, 2020).
4. Product Owner, https://www.scrum.org/resources/what-is-a-product-owner (October, 2020).
5. GOTO 2014 – Not Just Code Monkeys, Martin Fowler, https://www.youtube.com/watch?

v=4E3xfR6IBII (October, 2020).
6. Extreme programming, https://en.wikipedia.org/wiki/Extreme_programming (October, 2020).
7. Software Craftsmanship, https://en.wikipedia.org/wiki/Software_craftsmanship (October, 2020).
8. Dunning–Kruger effect definition, https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect 

(October, 2020).
9. Spike definition, https://en.wikipedia.org/wiki/Spike_(software_development) (October, 2020).
10. Burn down chart definition, https://en.wikipedia.org/wiki/Burn_down_chart (October, 2020).
11. How Dead Space's Scariest Scene Almost Killed the Game, https://www.youtube.com/watch?

v=BQ3iqq49Ew8 (October, 2020).
12. How do you estimate on an Agile project?, https://info.thoughtworks.com/rs/thoughtworks2/

images/twebook-perspectives-estimation_1.pdf (October, 2020).
13. The price of faking agility, https://keepgrowing.in/taking-care/the-price-of-faking-agility/ (October, 

2020).


