
Page 1 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps
Originally published on 25 October 2020

https://keepgrowing.in/taking-care/how-to-get-better-at-estimating-tasks-in-10-steps/

Estimating programming tasks is a complex process. There is no one-size-fits-all solution. Further‐
more, skimping on resources to get it right turns the entire procedure into reading tea leaves. However, 
we can improve the accuracy of our predictions by applying the following practices.

1. Expect trust when making decisions
Having the “productive partnerships” value from the Manifesto for Software Craftsmanship in mind, 
verify that the relationship between a Development Team, Domain Experts and a Product Owner 
is free from the mis-engagement of management. This advice is extremely helpful in reducing the 
time we waste on work that doesn’t add much value to the product. Moreover, we’ll be able to pro‐
duce more accurate estimates.

The team decides “how” to achieve goals, the Product Owner decides “what” is most important. The 
Domain Experts provide crucial knowledge about their area of expertise. Don’t let this balance suffer 
from micromanagement or unnecessary intermediaries and remember that developers are not just 
code monkeys. Otherwise, estimating tasks lacks the insight that the team could have brought in 
personally discussing goals and requirements with the Product Owner and Domain Experts. Ulti‐
mately, the estimates are unreliable and the time spent on tasks is wasted because the value provided 
is less relevant to end users than it should be.

You’re a professional

Ignoring developers when estimating tasks will result in numbers that are appealing form a market‐
ing point of view. However, it shows a serious lack of competence. Unfortunately, there are many 
projects that have a technological stack, due date and feature list sealed on paper before even a single 
programmer was consulted.

It makes no sense to have estimates that are not based on reality. To cope with the imminent prob‐
lems, programmers are asked to abandon rules of software craftsmanship and cease to write unit 
tests. This is a quick and stupid way to completely destroy a project by making it unmaintainable, 
unusable, buggy and even dangerous. The fact that management may not understand the import‐
ance of the principles guiding professional programmers does not mean that they can view them 
as a waste of resources.

Trust facilitates task estimation

One of the most important strategy to ensure that a task actually benefits the project is to allow de‐
velopers to review both its requirements and design with the strong and direct support from the 
Domain Experts and Product Owner. As many team members as possible should be involved in this 
review to get reliable and thorough conclusions that are priceless when estimating tasks.



Page 2 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

By default, accept that the responsibility for making decisions about architecture, technology and or‐
ganizing work rests with the team. Each developer involved in the project should make a number of 
decisions for themselves. If the results are not adequate, the team will reexamine them during pair 
programming and code review. The “collective code ownership” practice guarantees that the whole 
team ensures project quality. In addition, the Extreme Programming and Software Craftsmanship 
principles greatly reduce the impact of inaccurate projections – it's easy to add new functions effi‐
ciently when the existing code is clean.

Micromanagement is a waste of time that has no place in a dignified and well-functioning organiza‐
tion. Moreover, a project that relies on a manager who used to have something to do with IT many 
years ago and now only they can make decisions is dead on arrival. Keep in mind that the more valu‐
able and productive developers are, the sooner they leave an organization that doesn’t trust them 
and doesn’t treat them like professionals. Even the most sophisticated methodologies will not help 
in obtaining valuable estimates when no one wants to work in the organization long enough to learn 
about the specifics of the project.

2. Don’t avoid consulting problem finders
People competent enough to identify the nuances and risks of software development should feel 
welcome when the team defines and estimates tasks. They can tell with great accuracy how long it 
will take to achieve a goal and how problematic it is. However, often what they have to say does not 
match our wishful thinking. Therefore, they protect us from committing to overly optimistic estim‐
ates. They are invaluable in adjusting the scope of a project and making it more realistic.

Never sign all documents confirming the terms of a contract without consulting with specialists. 
Take them seriously when they point out unrealistic expectations or promises conjured out of thin 
air. Don’t underestimate their cries for more down-to-earth estimates – this protects the entire com‐
pany from becoming addicted to miracles as the due date approaches. Any wishful thinking about 
a project deadline or scope is unacceptable.

A real professional will do all it takes to keep their employer from financial consequences of over‐
committing. This includes providing the necessary expertise to completely deprive management 
of any illusions before they seal any promises on paper.

3. Allocate enough time for a proper research
Even an experienced team needs time to research all new, better, and more optimized ways to imple‐
ment features. In other words, we cannot rely on implementing familiar and common features 
in the way that was used three years ago.

Lack of research results in unoptimized, outdated code that is vulnerable to security breaches and 
more difficult to maintain by younger developers, accustomed to modern, better-suited tools. If you 
don’t include the research phase as part of the assignment you evaluate, you will lose the opportun‐



Page 3 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

ity to learn about new security issues that could endanger the project or external libraries that would 
perfectly suit your needs, saving a lot of time for implementation.

A research phase is flexible and it takes various amount of time for different developers and differ‐
ent tasks. However, ignoring it during estimating tasks will more likely rise maintenance costs 
as the code may introduce bugs or fail to solve the real problem.

How to research a programming assignment so the time is well invested

1. Develop a comprehensive understanding of the problem. Book some time to consult Domain 
Experts, don’t be timid about the amount of questions – ask as many as you need.

2. Rephrase the problem from the point of view of users. How much value solving the task will bring 
to the project?

3. Create sketches, diagrams, make notes in plain English, enumerate algorithmic steps, write test 
cases. Ask other programmers for peer reviewing your answer to a problem. Verify whether you’re 
thinking in the right direction or need to change the approach. Cross question the solution design 
while it’s still only on paper.

4. Ask what are the possible blockers, difficulties, complications. Don’t attempt to solve them at 
this point! The sole purpose of this list is to prevent surprise from foreseeable problems. In ad‐
dition, it will make the research phase more thorough and provide you with a list of exceptions 
to deal with.

5. Research the place in the existing codebase where the solution is meant to fit. Which parts 
of the system will be interacting with each other?

6. Be clear about features that the solution won’t provide. Mark the boundaries to protect yourself 
from feature creep.

7. Search Google for ready to use solutions. Examine available open source and commercial lib‐
raries and asses their usefulness, availability and maintenance cost. Ponder on the pros and 
cons of adding an external dependency to the project.

8. Use a spike to verify that your solution passes unit testing that reflects the most important re‐
quirements. Responding to business needs is a very valuable part of our job, but it may be cum‐
bersome. Therefore, we must be able to check many ideas quickly and easily against these tests.

Benefits

Attach the artifacts created during the research to the task description. Make your research explicit 
to other programmers. Not only will it save a lot of time when someone has to pick up your assign‐
ment, it will also provide test cases, a list of exceptions to handle, and details that can be copied into 
the project documentation.

4. Break down features into easily manageable tasks
Make sure that the tasks are actually achievable in a reasonably short time, e.g. they have been eval‐
uated by the team at 2-5 points. As a result, any mistakes made when estimating tasks will appear 
early, will be minor, and won’t disrupt the project schedule.



Page 4 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

Don’t hesitate to break a user story into smaller components. It’ll help you define the requirements 
more clearly and identify all corner cases. Moreover, the whole story will be implemented more ac‐
curately, without taking any shortcuts that could harm the project in the long run. This will keep 
everyone more focused on solving real problems and adding substantial value to the project.

Another key point is that more concise tasks make continuous integration much easier. A regularly 
updated codebase means we don’t have to make as many assumptions when estimating future work‐
load. Moreover, we can follow the progress on a burn down chart more accurately and quickly notice 
even a slight delay. Thus, allowing us to apply our back-up plan in good time to meet the deadline 
(e.g. cut the sprint scope, do pair programming, use an open source library instead of custom code, 
etc.).

5. Keep priorities in check
The better defined and divided the tasks are, the easier it is to prioritize them. Estimates are only fore‐
casts based on many assumptions, guesses, and, usually, a small amount of data. It’s irrational to 
expect them to be 100% correct. Therefore, we must be prepared when reality does not follow them. 
Fortunately, thanks to reasonably short sprints (e.g. two weeks) and well-defined, small tasks, we 
can quickly realise that the predictions may not be correct. When the priorities are clear, we can en‐
gineer a back-up plan for the situation when some of the most valuable features can’t be delivered 
on time.

Separating what’s crucial from what’s nice to have in a project might even save the deadline as we 
can easily decide how to narrow the scope of an upcoming release. This way, we can meet the dead‐
line and still deliver a valuable product.

“How Dead Space’s Scariest Scene Almost Killed the Game” – the interview with Glen Schofield, 
the co-founder of Sledgehammer Games and the creator/director of Dead Space, gives a great ex‐
ample of how adjusting a project scope, maintaining a laser focus, dividing problems into manage‐
able chunks and sticking to priorities can save a project.

6. Estimate in appropriate units
Be aware that an hour from an experienced developer gives a different amount of work than an hour 
from a person learning a particular technology. One hour is not equal to another. Estimating in ab‐
stract points and according to the Fibonacci sequence will reflect differences in tasks complexity.

Moreover, defective leadership can make programmers prioritize meeting a specific deadline over 
solving a problem, shifting their attention from understanding a task to its due date. Thinking about 
how much time we have before a task has to be marked as “Done” on the project board makes it diffi‐
cult for us to focus on dealing with the actual problem. As a result, many tasks “completed” on time 
provide only superficial solutions to persistent problems. As we can read in the Atlassian estimation 
guide:



Page 5 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

“Story points reward team members for solving problems based on difficulty, not time spent. This 
keeps team members focused on shipping value, not spending time.”

https://www.atlassian.com/agile/project-management/estimation

When you can try estimating tasks in hours

1. Tasks are usually small, well-defined and most of them received the same (and low) number 
of points (there is little or no difference in complexity between them).

2. You collected enough statistics for the particular team to calculate how many hours on average 
a task takes for 2, 3 and 5 points (the average for tasks of more than 5 points can be deceptive).

3. You realise stats expire when a team gains or loses a member – coding, pair programming, and 
code review are conducted by a different team from then on.

4. The team is strongly unified in experience, skills and competence within the project’s technolo‐
gical stack, which means that one developer working hour gives a similar result to another de‐
veloper working hour.

5. The team agrees on this.
6. Estimating tasks in hours is carried out in each team separately (do not use statistics collected 

for one team to another).

7. Remember that estimates are not transitive between 
teams
Estimates only belong to those who have committed to them. You can’t freely apply them to new 
team members or even other teams. Take into account all differences in experience and proficiency 
between programmers – they are not faceless, indistinguishable beings. Expect teams to take re‐
sponsibility only for the estimates they have committed to. Don’t compare estimates between different 
groups to force one of them to scale-up.

“Each team will estimate work on a slightly different scale, which means their velocity (measured in 
points) will naturally be different. This, in turn, makes it impossible to play politics using velocity as 
a weapon.”

https://www.atlassian.com/agile/project-management/estimation

Other people’s predictions or management’s ideas about the duration of the assignment are in vain 
without the team’s confirmation. Always see yourself and other developers as professionals who can 
evaluate their own work.

8. Ask for the actual scope and deadlines
Make sure everyone on your team knows the true deadlines and project requirements. Agreeing to 
work with managers who keep this knowledge to themselves is asking for trouble. There are already 
enough assumptions that the team must make to maintain an agile approach and deliver software 
tailored to the ever-changing needs of consumers.



Page 6 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

If somebody is deliberately hiding the business knowledge to force more optimistic estimates, the pro‐
ject is doomed to failure. If you are consistently in a situation where you learned about a requirement 
crucial for estimating a task AFTER you’d started working on it, you have to take a stand. First, when 
someone wants to add an expensive requirement to an already estimated task, agree on what can 
be removed from the sprint scope if the deadline is compromised. Second, make sure that transpar‐
ency is a value shared by everyone involved in the project. Otherwise, the estimates are useless.

The team should refuse to estimate when communication with stakeholders lacks transparency 
or someone is lying about the requirements to get better estimates. If developers don’t know the con‐
text, strategic goals, and priorities of a project, their performance suffers. They can’t foresee the 
consequences of their code and technological choices, leading to unsustainable and expensive code. 
In summary, agreeing to work in a dishonest environment takes away the opportunity to solve real 
problems. Instead, we provide only superficial solutions and a rapidly growing technical debt.

9. Use past data to better estimate future tasks
Being consistent about measuring velocity pays off when we need to predict future productivity. 
There is no point in planning tasks worth 60 points when, on average, our team manages to com‐
plete 30 in one sprint.

Ignoring statistics not only destroys confidence in the team’s past performance, but also makes pri‐
oritizing difficult. Wishful thinking brings more harm than good. When we disregard the actual team 
performance, the scope of the sprint may expand in an uncontrolled manner. Trying to force estim‐
ates that are inconsistent with data and facts is an easy way to destroy the project and team. Agree 
on the techniques you use in your sprint review to gain valuable insight, such as:

“Try, for example, pulling up the last 5 user stories the team delivered with the story point value 8. 
Discuss whether each of those work items had a similar level of effort. If not, discuss why. Use that 
insight in future estimation discussions.”

https://www.atlassian.com/agile/project-management/estimation

The hope that we’ll automatically “get better” at estimating tasks is unreasonable. We can’t even copy 
estimates for the same tasks! Assuming you repeatedly evaluate and do one type of task, you will 
also be more efficient in completing it, which impacts each subsequent prediction. If the tasks are 
identical, you deal with the problem only once and then somebody can reuse the solution (unless you 
solved the issue poorly). Furthermore, as a developer, you have to work with different technologies, 
resolve various problems and constantly learn new tools. Therefore, even when working with similar 
applications, you are never asked to estimate two exactly the same tasks.

We can’t effectively learn from the past if we haven’t measured progress or recorded any lessons 
from previous sprints.



Page 7 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

10. Openly review both failed and successful estimates
If you have to explain overdue tasks, take your time to identify the actual sources of the delay.
Reiterate over the steps presented in this article and answer the following questions:

1. Who decided on the estimates? Was it the team in agreement with the Product Owner and Do‐
main Experts or was it someone from the management?

2. Has anyone tried to brainstorm possible problems and blockers that might hinder progress?
3. Was the research phase a planned and organized undertaking?
4. What is the size of the overdue tasks? How often the new code was merged with the codebase? 

In which stage of the sprint you realised that something won’t be delivered?
5. Did the priorities keep changing during the sprint? Who decided on what should be done? Did 

you have a list of features that are not essential and could be cut out of the sprint’s scope? Did 
the team spend time on nice-to-have features before moving on to must-haves?

6. In which units the estimates were made? Did you estimated in hours for a development team of 
varying skill levels?

7. Did anyone decide to move the work to another team and keep the original projections?
8. Were the goals clear to everyone? Or maybe the management kept the team in the dark to avoid 

tough discussions about scope and priorities?
9. On what basis were the estimates made? Do you have any historical data for the team such as 

its velocity to use as a reference?
10. What conclusions from the last review were implemented in this sprint? Did they work?

Group the problems

Trying to tackle all obstacles at once can be discouraging and ineffective. As a remedy, try to assign 
the problems you identified to the following categories:

• the requirements that was kept hidden from the developers during estimating tasks;
• the actual surprises – the problems that could not be predicted;
• what was poorly predicted – include both too optimistic and too pessimistic estimates.

Determine which group is the most numerous. As a result, you will know which area improvement 
will have the most positive impact on better task estimation.

Discard what doesn’t work, embrace what’s worth keeping

Consult every member of the team and use their feedback to identify the estimation mistakes. 
On the other hand, don’t forget about all the techniques and procedures that improved your accur‐
acy. Make sure that the conclusions are clear and everyone involved in the process agrees on them. 
Transfer the truly beneficial practices to next sprints and other projects if applicable.

However, if the estimates were imposed on the team, the developers don’t own them. This limits 
the space for improvements as they can’t do much until the management starts to trust them.



Page 8 out of 8

https://keepgrowing.in

https://github.com/little-pinecone

© 2020 Marta Szymek

How to get better at estimating tasks in 10 steps

References
1. Manifesto for Software Craftsmanship, http://manifesto.softwarecraftsmanship.org/ (October, 

2020).
2. Scrum Development Team definition, https://www.scrum.org/resources/what-is-a-scrum-

development-team (October, 2020).
3. Domain Expert definition, https://wiki.c2.com/?DomainExpert (October, 2020).
4. Product Owner definition, https://www.scrum.org/resources/what-is-a-product-owner (October, 

2020).
5. GOTO 2014 – Not Just Code Monkeys, Martin Fowler, https://www.youtube.com/watch?

v=4E3xfR6IBII (October, 2020).
6. Extreme programming, https://en.wikipedia.org/wiki/Extreme_programming_practices (October, 

2020).
7. Software Craftsmanship, https://en.wikipedia.org/wiki/Software_craftsmanship (October, 2020).
8. Dunning–Kruger effect definition, https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect 

(October, 2020).
9. Spike definition, https://en.wikipedia.org/wiki/Spike_(software_development) (October, 2020).
10. Burn down chart definition, https://en.wikipedia.org/wiki/Burn_down_chart (October, 2020).
11. How Dead Space's Scariest Scene Almost Killed the Game, https://www.youtube.com/watch?

v=BQ3iqq49Ew8 (October, 2020).
12. How do you estimate on an Agile project?, https://info.thoughtworks.com/rs/thoughtworks2/

images/twebook-perspectives-estimation_1.pdf (October, 2020).
13. The price of faking agility, https://keepgrowing.in/taking-care/the-price-of-faking-agility/ (October, 

2020).


